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Abstract: Spatial  data  mining,  i.e.,  mining  knowledge  from  large amounts of spatial data, is a highly 

demanding  field because huge amounts of spatial data have been collected in various applications,  ranging from 

remote sensing, to geographical information systems (GIS), computer cartography, environ-mental  assessment  

and  planning,  etc.  The collected data for exceeded human's ability to analyze.  Recent studies on data mining 

have extended the scope of data mining from relational and transactional databases to spatial databases. This 

paper summarizes recent works on spatial data mining, from spatial data generalization, to spatial data clustering,  

mining spatial association rules, etc.  It shows that spatial data mining is a promising field, with fruitful research 

results and many challenging issues. 

 

1. INTRODUCTION 
 

Advances in database technologies and data collection techniques  including barcode  reading,  remote sensing, satellite  

telemetry,  etc.,  have  collected  huge  amounts of  data  in  large  databases.   This explosively growing data creates the 

necessity of knowledge/information discovery from data,  which  leads  to  a  promising emerging field, called data 

mining or knowledge discovery in databases (KDD). Knowledge discovery in databases can be defined as the discovery 

of interesting, implicit, and previously unknown knowledge from large databases.  Data mining represents the integration 

of several   fields, including machine learning, database systems, data visualization, statistics, and information theory. 

Although there have been many studies of data mining in relational and transaction databases ,  data  mining  is  in  great  

demand  in  other  applicative  databases,  including  spatial  databases,  temporal databases, object-oriented databases, 

multimedia databases,  etc.   Our focus of this overview is on the methods of spatial data mining, i.e., discovery of 

interesting knowledge from spatial data. Spatial data are the data related to objects that occupy space.  A spatial database 

stores spatial objects represented by spatial data types and spatial relationships among such objects. Spatial data carries 

topological and/or distance information and it is often organized by spatial indexing structures and accessed by spatial 

access methods. These distinct features of a spatial database pose challenges and bring opportunities for mining 

information from spatial data. Spatial data mining, or knowledge discovery in spatial database, refers to the extraction of 

implicit knowledge, spatial relations, or other patterns not explicitly stored in spatial databases. 

 

Previous works in machine learning, database systems and statistics laid the foundation for research into knowledge 

discovery in databases. Also, advances in spatial databases, such as spatial data structures, spatial reasoning, 

computational geometry, etc., paved the way for the study of spatial data mining. A crucial challenge to spatial data 

mining is the efficiency of spatial data mining algorithms due to the huge amount of spatial data and the complexity of 

spatial data type and spatial accessing methods. 

 

Spatial data mining methods can be applied to extract interesting and regular knowledge from large spatial databases. In 

particular, they can be used for understanding spatial data, discovering relationships between spatial and non-spatial data, 

construction of spatial knowledge-bases, query optimization, data reorganization in spatial databases, capturing the 

general characteristics in simple and concise manner, etc. This has wide applications in Geographic Information Systems 

(GIS), remote sensing, image databases exploration, medical imaging, robot navigation, and other areas where spatial data 

are used. Knowledge discovered from spatial data can be of various forms, like characteristic and discriminant rules, 

extraction and description of prominent structures or clusters, spatial associations, and others. The purpose of this survey 
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is to provide an overall picture of the methods of spatial data mining, their strengths and weaknesses, how and when to 

apply them, and to determine what was achieved so far and what are the challenges yet to be faced. 

1.1 Spatial Data Mining Background 

Statistical spatial analysis has been the most common approach for analyzing spatial data. Statistical analysis is a well 

studied area and therefore there exist a large number of algorithms including various optimization techniques. It handles 

very well numerical data and usually comes up with realistic models of spatial phenomena. The major disadvantage of 

this approach is the assumption of statistical independence among the spatially distributed data. This causes problems as 

many spatial data are in fact interrelated, i.e., spatial objects are influenced by their neighboring objects. Regression 

models with spatially lagged forms of the dependent variables can be used to alleviate this problem to some extent. 

Unfortunately, it makes the whole modelling process more complicated and can only be done by experts with a fair 

amount of domain knowledge and statistical expertise. In other words, it is not the kind of technique that we want to 

present to the end users for the analysis of spatial data. Furthermore, the statistical approach cannot model nonlinear rules 

very well and symbolic values like names are handled poorly. Statistical methods also do not work well with incomplete 

or inconclusive data. Another problem related to statistical spatial analysis is the expensive computation of the results. 

With the advent of data mining, researchers proposed various methods for discovering knowledge from large databases. 

Most of them concentrate on relational or transaction databases. These methods strived to combine the already mature 

areas like machine learning, databases and statistics. Studies like laid a foundation for spatial data mining. Machine 

learning techniques learning from examples and generalization and specialization are widely used in spatial data mining. 

It did not take long before the statistical cluster analysis technique was modified for the use in spatial data mining . Also 

other methods were extended toward knowledge discovery in spatial databases. In the next section, we de ne some 

commonly used terms in spatial data mining. 

Rules: Various kinds of rules can be discovered from databases in general. For example, characteristic rules, discriminant 

rules, association rules, or deviation and evolution rules can be mined. A spatial characteristic rule is a general description 

of spatial data. For example, a rule describing the general price range of houses in various geographic regions in a city is a 

spatial characteristic rule. A spatial discriminant rule is a general description of the features discriminating or contrasting 

a class of spatial data from other class(es) like the comparison of price ranges of houses in different geographical regions. 

Finally, a spatial association rule is a rule which describes the implication of one or a set of features by another set of 

features in spatial databases. For example, a rule associating the price range of the houses with nearby spatial features, 

like beaches, is a spatial association rule. 

Thematic maps: Thematic maps present the spatial distribution of a single or a few attributes. This differs from general 

or reference maps where the main objective is to present the position of objects in relation to other spatial objects. 

Thematic maps may be used for discovering different rules. For example, we may want to look at temperature thematic 

map while analyzing the general weather pattern of a geographic region. There are two ways to represent thematic maps: 

raster and vector. In the raster image form thematic maps have pixels associated with the attribute values. For example, a 

map may have the altitude of the spatial objects coded as the intensity of the pixel (or the color). In the vector 

representation, a spatial object is represented by its geometry, most commonly being the boundary representation along 

with the thematic attributes. For example, a park may be represented by the boundary points and corresponding elevation 

value. 

Image databases: These are special kind of spatial databases where data almost entirely consists of images or pictures. 

Image databases are used in remote sensing, medical imaging, etc. They are usually stored in form of grid arrays 

representing the image intensity in one or more spectral ranges. 

 

1.1.1 Spatial Data Structures, Computations, and Queries 

Algorithms for spatial data mining involve the use of spatial operations like spatial joins, map overlays, nearest neighbor 

queries and others. Therefore, efficient spatial access methods (SAM) and data structures for such computation is also a 

concern in spatial data mining. We will brie y introduce some of the prominent spatial data structures and spatial 

computations. 
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Spatial Data Structures: Spatial data structure consists of points, lines, rectangles, etc. In order to build indices for these 

data, multidimensional trees have been proposed. These include quad trees, k-d trees, R-trees, R*-trees, etc. One of the 

prominent SAMs which was much discussed in the literature recently is R-tree and its modification R*-tree. Objects 

stored in R-trees are approximated by Minimum Bounding Rectangles (MBR). R-tree in every node stores a set of 

rectangles. At the leaves there are stored pointers to representation of polygon's boundaries and polygon's MBRs. At the 

internal nodes each rectangle is associated with a pointer to a child and represents minimum bounding rectangle of all 

rectangles stored in the child. 

Spatial Computations: Spatial join is one of the most expensive spatial operations. In order to make spatial queries 

efficient spatial join has to be efficient as well. Brinkho et al. proposed an efficient multilevel processing of spatial joins 

using R*-Trees and various approximation of spatial objects. The first step filter finds possible pairs of intersecting 

objects using first their MBRs and later other approximations. In the second step refinement detailed geometric procedure 

is performed to check for intersection. Another important spatial operation, map overlay, is especially important in 

Geographic Information Systems. 

Spatial Query Processing: Optimization strategies for spatial query processing are outlined in Aref and Samet. The 

authors proposed an architecture for spatial database called SAND (spatial and nonspatial data) architecture, which is a 

model of the extended relational database with spatial operations. This architecture provides both spatial and nonspatial 

components of spatial database to participate in query processing and optimization. 

 

1.2  Spatial Data Mining Architecture 

Various architectures (models) have been proposed for data mining. They include Han's architecture for general data 

mining prototype DBLEARN/DBMINER, Holsheimer et al's parallel architecture, and Matheus et al.'s multicomponent 

architecture . Almost all of these architectures have been used or extended to handle spatial data mining. Matheus et al.'s 

architecture seems to be very general and has been used by other researchers in spatial data mining, including Ester et al. 

This architecture comparable to others is presented in Figure 1. In this architecture, the user may control every step of the 

mining process. Background knowledge, like spatial and non-spatial concept hierarchies, or information about database, is 

stored in a knowledge base. Data is fetched from the storage using the DB interface which enables optimization of the 

queries. Spatial data index structures, like R-trees, may be used for efficient processing. The Focusing Component decides 

which parts of data are useful for pattern recognition. For example, it may decide that only some attributes are relevant to 

the knowledge discovery task, or it may extract objects whose usage promises good results. Rules and patterns are 

discovered by the Pattern Extraction module. This module may use statistical, machine learning, and data mining 

techniques in conjunction with computational geometry algorithms to perform the task of finding  rules and relations. The 

interestingness and significance of these patterns is then processed by Evaluation module to possibly eliminate obvious 

and redundant knowledge. The four last components may interact between themselves through the Controller part. 

1.3 Organization of the paper 

The rest of the paper is organized as follows. In Section 2 we survey the methods for spatial data mining, we categorize 

the methods and discuss each in detail. Section 2.1 describes generalization based methods, Section 2.2 discusses 

clustering based methods, Section 2.3 presents the methods used to explore spatial associations, Section 2.4 describes 

pattern recognition methods, and finally in Section 2.5 other interesting methods are outlined. We present suggestions and 

future directions in Section 3, and we conclude our discussion in Section 4. 

2.  METHODS FOR KNOWLEDGE DISCOVERY IN SPATIAL DATABASES 

Geographic data consist of spatial objects and nonspatial description of these objects. Non-spatial description of spatial 

objects can be stored in a traditional relational database where one attribute is a pointer to spatial description of the object. 

Spatial data can be described using two different properties, geometric and topological. For example, geometric properties 

can be spatial location, area, perimeter, etc., whereas topological properties can be adjacency (object A is neighbor of 

object B), inclusion (object A is inside in object B), and others. Thus, the methods for discovering knowledge can be 

focused on the non-spatial and/or spatial properties of spatial objects. 

The algorithms for spatial data mining include generalization-based methods for mining spatial characteristic and 

discriminant rules, two-step spatial computation technique for mining spatial association rules, aggregate proximity 
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technique for finding characteristics of spatial clusters , etc. In the following sections, we categorize and describe a 

number of these algorithms. 

2.1 Generalization-Based Knowledge Discovery 

One of the widely used techniques in machine learning is learning from examples. This method is often combined with 

generalization. This approach cannot be directly adopted for large spatial databases because: 1) the algorithms are 

exponential in the number of examples, and 2) it does not handle noise and inconsistent data very well. Han et al.modied 

these techniques and gave an attribute-oriented (as opposed to the tuple-oriented in machine learning algorithms) 

induction algorithm to mine knowledge from large relational databases. Later Lu et al. extended this technique to spatial 

databases. Thus, the assumptions that are made for relational databases are also carried to spatial data mining. The 

generalization-based knowledge discovery requires the existence of background knowledge in the form of concept 

hierarchies. 

 

 

Figure 1: An architecture for a KDD system 

 

  

Figure 2: Example of agricultural land use concept hierarchy 

 

In the case of spatial databases, there can be two kinds of concept hierarchies, non-spatial and spatial. Concept hierarchies 

can be explicitly given by the experts, or in some cases they can be generated automatically by data analysis. An example 

of a concept hierarchy for agricultural land use is shown in Figure 2. As we ascend the concept tree, information becomes 

more and more general, but still remains consistent with the lower concept levels. For example, in Figure 2 both jasmine 

and basmati can be generalized to the concept rice which in turn can be generalized to concept grains, which also includes 

wheat. A similar hierarchy may exist for spatial data. For example, in a generalization process, regions representing 

counties can be merged to provinces and provinces can be merged to larger regions. Attribute-oriented induction is 

performed by climbing the generalization hierarchies and summarizing the general relationships between spatial and non-

spatial data at higher concept levels. It can be done on non-spatial data by (a) climbing the concept hierarchy when 

attribute values in a tuple are changed to the generalized values, (b) removing attributes when further generalization is 

impossible and there are too many different values for an attribute, and (c) merging identical tuples. Induction is 

continued until every attribute is generalized to the desired level. The desired level is reached when the number of 

different values for the attribute in the generalized table is no greater than the generalization threshold for this attribute. 
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During the process of merging of identical tuples the number of merged tuples is stored in additional attribute count to 

enable quantitative presentation of acquired knowledge. Lu et al. presented two generalization based algorithms, spatial-

data-dominant and non-spatial-data-dominant generalizations. Both algorithms assume that the rules to be mined are 

general data characteristics and that the discovery process is initiated by the user who provides a learning request (query) 

explicitly, in a syntax similar to SQL. We will brie y describe both algorithms as follows: 

Spatial-Data-Dominant Generalization: In the first step all data described in the query are collected. Given the spatial 

data hierarchy, generalization can be performed first on the spatial data by merging the spatial regions according to the 

description stored in the concept hierarchy. Generalization of the spatial objects continues until the spatial generalization 

threshold is reached. The spatial generalization threshold is reached when the number of regions is no greater than the 

threshold value. After the spatial-oriented induction process, non-spatial data are retrieved and analyzed for each of the 

spatial objects using the attribute oriented induction technique as described above. An example of a query and the result 

of the execution of the spatial-data-dominant generalization algorithm is presented in Figure 3. In this example, 

temperature in the range [20, 27] is generalized to moderate, and temperature in the range [27, 1) to hot. The answer to the 

query is the description of all regions using a disjunction of a few predicates which characterize each of the generalized 

regions. Temperature measured in the east-central region of British Columbia is in the range [22, 30]. Thus, in our 

example, the description of the temperature weather pattern in this region is hot or moderate. The computational 

complexity of the algorithm is O(N logN ), where N is the number of spatial objects. 

Non-spatial-Data-Dominant Generalization: This method also starts with collecting all data relevant to the user query. 

In the example presented in Figure 4 the DB interface extracts the precipitation data relevant to the province and time 

period specified in the query. In the second step the algorithm performs attribute oriented induction on the non-spatial 

attributes, generalizing them to a higher (more general) concept level. For example, the precipitation value in the range 

(10 in., 15 in.] can be generalized to the concept wet. The generalization threshold is used to determine whether to 

continue or stop the generalization process. In this step the pointers to spatial objects are collected as a set and put with 

the generalized non-spatial data. In the third and the last step of the algorithm, neighboring areas with the same 

generalized attributes are merged together based on the spatial function adjacent to. For example, if in one area the 

precipitation value was 17 in., and in neighboring area it was 18 in. both precipitation values are generalized to the 

concept very wet and both areas are merged. Approximation can be used to ignore small regions with different non-spatial 

description. For example, if the majority of area land can be described as industrial, but a few gas stations exist in this 

area the whole area can be described as industrial one. The result of the query may be presented in the form of a map with 

a small number of regions with high level descriptions as it is shown in Figure 4. The computational complexity of this 

algorithm is also O (N logN ), where N is the number of spatial objects. 

We presented two generalization based algorithms that assumed the concept hierarchies to be given or generated 

automatically. However, as pointed out before, there may be cases where such hierarchies are not present a priori. Another 

problem with previous algorithms is that the spatial components of the databases are explored by merging regions at 

lower levels of the concept hierarchy to form region(s) at higher levels of the hierarchy. Both of these facts suggest that 

the quality and the interestingness of the mined characteristic rules is going to be much dependent upon the given concept 

hierarchy(ies). In many cases such hierarchies are given by the experts and they may be not entirely appropriate. 

Therefore, we would like to find algorithms that do not need to use these hierarchies. We will describe an algorithm not 

depending on spatial concept hierarchies in the next section. 

 

Figure 3: Example of a query and the result of the execution of the spatial-data-dominant generalization method 
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Figure 4: Example of a query and the result of the execution of the non-spatial-data-dominant generalization method 

 

2.2 Methods Using Clustering 

Cluster analysis is a branch of statistics that has been studied extensively for many years. The main advantage of using 

this technique is that interesting structures or clusters can be found directly from the data without using any background 

knowledge, like concept hierarchies. A similar approach in machine learning is known as unsupervised learning. We can 

exploit the results of research on clustering techniques in the spatial data mining process as proposed in. 

Clustering algorithms used in statistics, like PAM or CLARA , are reported to be inefficient from the computational 

complexity point of view. As for the efficiency concern, a new algorithm, called CLARANS (Clustering large 

Applications based upon RANdomized Search), was developed for cluster analysis. Experimental evidence showed that 

CLARANS outperforms the two existing cluster analysis algorithms, PAM (Partitioning Around Medoids) and CLARA 

(ClusteringLARge Applications). Ng and Han used CLARANS in spatial data mining algorithms, SD(CLARANS) and 

NSD(CLARANS). First, we will briefly describe the three cluster analysis algorithms. 

The PAM algorithm was developed by Kaufman and Rousseeuw. Assuming that there are n objects, PAM finds k clusters 

by understanding a representative object for each cluster. Such a representative, which is the most centrally located point 

in a cluster, is called a medoid. After selecting k medoids, the algorithm repeatedly tries to make a better choice of 

medoids analyzing all possible pairs of objects such that one object is a medoid and the other is not. The measure of 

clustering quality is calculated for each such combination. The best choice of points in one iteration is chosen as the 

medoids for the next iteration. The cost of a single iteration is O(k(n k)2). It is therefore computationally quite inefficient 

for large values of n and k. 

The CLARA algorithm was proposed by Kaufman and Rousseeuw as well. The difference between the PAM and CLARA 

algorithms is that the latter one is based upon sampling. Only a small portion of the real data is chosen as a representative 

of the data and medoids are chosen from this sample using PAM. The idea is that if the sample is selected in a fairly 

random manner, then it correctly represents the whole data set and therefore, the representative objects (medoids) chosen, 

will be similar as if chosen from the whole data set. CLARA draws multiple samples and  outputs the best clustering out 

of these samples. As expected, CLARA can deal with larger data sets than PAM. The complexity of each iteration now 

becomes O(kS2 +k(n k)), where S is the size of the sample. The authors indicated through their experimental results that 

samples of size 40+2k give good results. 

It is easy to realize that PAM searches for the best k medoids among a given data set whereas CLARA searches for the 

best k medoids among the selected sample of the data set. Let us suppose that object O i is one of the medoids in the best 

k medoids. Thus, if during sampling O i is not selected, then CLARA will never find the best clustering. This is exactly 

the tradeo for efficiency. Ng and Han's [41] proposed CLARANS algorithm which tries to mix both PAM and CLARA by 

searching only the subset of the data set and it does not con ne itself to any sample at any given time. While CLARA has a 

fixed sample at every stage of the search, CLARANS draws a sample with some randomness in each step of the search. 

The clustering process can be presented as searching a graph where every node is a potential solution, i.e., a set of k 

medoids. The clustering obtained after replacing a single medoid is called the neighbor of the current clustering. The 

number of neighbors to be randomly tried is restricted by the parameter max neighbor. If a better neighbor is found 

CLARANS moves to the neighbor's node and the process is started again, otherwise the current clustering produces a 
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local optimum. If the local optimum is found CLARANS starts with new randomly selected node in search for a new local 

optimum. The number of local optima to be searched is also bounded by the parameter num local. CLARANS has been 

experimentally shown to be more efficient than both PAM and CLARA. The authors claim that the computational 

complexity of every iteration in CLARANS is basically linearly proportional to the number of objects. This claim has 

been supported by Ester et al. in. It should be mentioned that CLARANS can be used to find the most natural number of 

clusters k nat. The authors adopted a heuristic of determining k nat, which uses silhouette coffecients1, introduced by 

Kaufman and Rousseeuw [31]. CLARANS also enables the detection of outliers, e.g., points that do not belong to any 

cluster. 

Based upon CLARANS, two spatial data mining algorithms were developed in a fashion similar to the algorithms 

discussed earlier in this section: spatial dominant approach, SD(CLARANS) and non-spatial dominant approach, 

NSD(CLARANS). Both algorithms assume that the user species the type of the rule to be mined and relevant data through 

a learning request in a similar way as in the experimental database mining prototype, DBLearn. 

 

Algorithm SD (CLARANS) 

In this spatial dominant approach, spatial component(s) of the relevant data items are collected and clustered using 

CLARANS. Then, the algorithm performs an attribute-oriented induction on non-spatial description of objects in each 

cluster. The result of the query presents high-level non-spatial description of objects in every cluster. For example, one 

can find that in Vancouver expensive housing units are clustered in 3 clusters. In the downtown cluster there are mainly 

expensive condominiums; in the waterfront cluster mansions and single houses are located; and the third cluster consists 

mainly of single houses. 

 

Algorithm NSD (CLARANS) 

This non-spatial dominant approach first applies non-spatial generalizations. Attribute-oriented generalization is 

performed on the non-spatial attributes and produces a number of generalized tuples.  For example, the descriptions  of  

expensive  housing  units  can  be  generalized  to  single  houses,  mansions  and  condominiums. Then, for each such 

generalized tuple, all spatial components are collected and clustered using CLARANS to find k nat clusters. In the final 

step, the clusters obtained that way are checked to see if they overlap with clusters describing other types of objects.  If so, 

then the clusters are merged, and the corresponding generalized non-spatial descriptions of tuples are merged as well. 

Depending  upon  the  rules  or  the  form  of  knowledge  that  user  wants  to  discover,  it  may  be  better  to  choose  

one  or  the  other  of  the  above  two  algorithms.  Usually SD (CLARANS) is more efficient than NSD(CLARANS). 

But, when the distribution of points is mainly determined  by  their  non-spatial  attributes  NSD(CLARANS) may have 

an edge. 

 

CLARANS in large Spatial Databases 

Focusing Methods: 

Ester et al. pointed out some of the drawbacks of the CLARANS clustering algorithm [41]. First of all, CLARANS 

assumes that the objects to be clustered are all stored in main memory.  This assumption may not be valid for large 

databases and that is why disk-based methods could be required.   Secondly, the efficiency of the algorithm can be 

substantially improved by modifying the focusing component of the algorithm (see architecture in Figure 1). 

The   first drawback is alleviated by integrating CLARANS  with  efficient  spatial  access  methods,  like  R*-i=1i, and 

tree.  R*-tree supports the focusing techniques that Ester et al.  proposed to reduce the cost of computations. It showed 

that the most computationally expensive step of CLARANS is calculating the total distances between the  two clusterings.   

Thus, the authors proposed two approaches to reduce the cost of this step. The first one is to reduce the number of objects 

to consider.   A centroid query returns the most central object of a leaf node of the R*-tree where neighboring points are 

stored. Only these objects are used to compute the medoids of the clusters.  Thus, the number of objects taken for  

consideration  is  reduced.   This technique  is  called  focusing  on  representative  objects.  

The drawback is that some objects, which may be better medoids, are not considered, but the sample is drawn in the way 

which still ensures good quality of clustering. The  other  technique  to  reduce  the  computations is to  restrict  the  

access  to  certain  objects  that  do  not actually contribute  to  the  computation.  The  authors further gave two different 
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focusing techniques which try to exploit this approach: focus on relevant clusters, and focus on a cluster. Using R*-tree 

structure the authors proposed a way of performing computation only on pairs of  objects  that  can  improve  the  quality  

of  clustering instead of checking all pairs of objects as it is done in CLARANS algorithm. 

Ester et al.   Applied the focusing  on  representative objects to a large protein database to find the segmentation of protein 

surfaces so as to facilitate the so-called docking queries.  They reported that when the focusing technique was used the e  

effectiveness decreased just from 1.5% to 3.2% whereas the efficiency increased by factor 50,  which  was  the  number  

of  points  stored  in  a  disk page.  The measure of effectiveness used is the average distance of the resulting clustering 

whereas the measure of efficiency used is the CPU time. 

 

Clustering Features and CF trees 

R-trees are not always available and their construction may be time consuming.  Z [52] pre-hang et. al. presented another 

algorithm BIRCH (Balanced Iterative Reducing and Clustering) for clustering of large sets of points.  The method they 

presented is the incremental one with possibility of adjustment of memory requirements to the size of memory that is 

available. The authors used concepts called Clustering Feature and CF tree. 

A Clustering Feature CF is the  triple  summarizing information about  subclusters  of  points. Given  Nd-dimensional  

points  in  the  subcluster: fXig, CF is defined as. 

 

CF = (N; L~S ; SS) 

 

where  N  is  the  number  of  points  in  the  subcluster, PNLS is the  linear sum on N points,  i.e.,~ X PN  2 

SS  is  the  square  sum  of  data  points,  i.e.,  i=1 Xi  

The  Clustering  Features  are  sufficient  for  computing clusters  and  they  constitute  an  efficient  information storage  

method as they  summarize information about the subclusters of points instead of storing all points. 

A CF  tree is  a  balanced  tree  with two  parameters: branching  factor  B  and  threshold  T.  The  branching factor  

species  maximum  number  of  children.   The threshold  parameter  species  the  maximum diameter of  subclusters  

stored  at  the  leaf  nodes.   By changing the threshold value we can change the size of the tree. The non-leaf nodes store 

sums of their children's CFs, and thus, they summarize the information about their children. The CF  tree  is  build  

dynamically  as  data points are inserted. Thus, the method is an incremental one.  A  point  is  inserted  to  the  closest  

leaf  entry (subcluster).  If the diameter of the subcluster stored in the leaf node after insertion is larger than the threshold  

value,  then,  the  leaf  node  and  possibly  other  nodes are  split.   After  the  insertion  of  the  new  point  the 

information about it is passed towards the root of the tree. One can change the size of the CF tree by changing the 

threshold.  If the size of the memory that is needed for storing the CF tree is larger than the size of the main memory, then 

a larger value of threshold is specied and the CF tree is rebuilt. The rebuild process is performed by building a new tree 

from the leaf nodes of the old tree. Thus, the process of rebuilding the tree is done without the  necessity  of reading all 

the points.  Therefore, for building the  tree  data has to be  read  just once.  The authors  present  also  some  heuristics  

for  dealing  with outliers and methods for improving the quality of CF trees by additional scans of the data. 

Zhang et.  al.  claim that  any clustering  algorithm, including CLARANS may be used with CF trees.  The CPU and I/O 

costs of the BIRCH algorithm are O(N ). The authors performed a number of experiments which showed linear scalability 

of the algorithm with respect to  number  of points,  insensibility to  the  input  order, and good quality of clustering of the 

data. 

 

2.3  Methods Exploring Spatial Associations 

All  methods  that  we  discussed  in  previous  sections find  only characteristic  rules  that  characterize  spatial objects  

according  to  their  nonspatial  attributes.   In many situations we want to discover spatial association rules, rules  that 

associate  one or more spatial objects with other spatial objects.  The concept of association rules was introduced by 

Agrawal et al. [1] in a study of  mining large  transaction  databases.   Koperski  and  Han  [34]  extended  this  concept  to  

spatial  databases.  
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A spatial association  rule  is  of  the  form  X ! Y (c%), where X and Y are sets of spatial or non-spatial predicates  and  

c%  is  the  confidence  of  the  rule.   For example, the following  rule  is  a  spatial  association rule:  is a(x,school)  !  

close to (x,park)  (80%).   This rule states  that 80%  of  schools  are  close  to  parks. There  are  various  kinds  of  spatial  

predicates  that could  constitute  a  spatial  association  rule.    Some  examples  are:    topological  relations  like  

intersects, overlap,  disjoint,  etc.;  spatial orientations  like left of, west of,  etc.;  distance  information,  such  as  close to,  

far away, etc. 

To confine the number of discovered rules, the concepts of  minimum  support  and  minimum  confidence are  used.   The  

intuition  behind  this  is  that  in  large databases,  there  may exist a large number of associations between objects but 

most of them will be applicable to only a small number of objects, or the confidence of rules may be low. For example, 

the user may not be interested in the relation associating 5% of houses and a single school.  He/she may be interested in 

rules that apply to at least 50% of houses.  We would like to filter out associations describing small percentage of objects 

using the minimum support thresholds.  We also want  to filter out rules with low confidence  using minimum confidence 

threshold. These thresholds can be different at each level of non-spatial description of objects since  

the same thresholds  may not find  interesting  associations at the lower concept  levels where the number of objects 

having the same description is smaller. Thus, at the lower levels of non-spatial hierarchies the percentage of objects may 

not reach the support threshold for the higher levels 2. Informally, we can de  ne the support of a pattern A in a set S3 to 

be the likelihood of  the  occurrence  of  pattern  A  in S,  and  the  confidence of rule X ! Y to be the likelihood that the 

pattern Y for object Os occurs whenever X occurs for the same object.  A set of predicates P is large in set S at level l of 

the non-spatial concept hierarchy if the support of P is no less than its minimum support threshold  0 for l level l (it is true 

for large number of objects),  and all ancestors of P from the concept hierarchy are large at their corresponding levels.  A 

strong rule is a rule with large support, i.e., no less than the minimum support  threshold,  and large  confidence,  i.e., no  

less  than  the minimum confidence  threshold.  A  top-down, progressive deepening search method for mining strong 

spatial association rules is described in [34]. To minimize the number of costly spatial computations a novel two step 

spatial computation technique for optimization during the search for associations was introduced.  Computation starts at 

the high level of spatial predicates like g close to (generalized close to). A pair of objects satisfies the predicate g close to 

if their Minimum Bounding Rectangles are located in the distance no greater then the threshold for this predicate.  

Thus, we deal with the problem of the intersections of isothetic rectangles.  Efficient spatial computation algorithms and 

structures like R-trees or plane-sweep techniques can be used in this step. More detailed and  finer, but  more expensive,  

spatial computations are  applied at lower concept levels only to those patterns that are large at the level of the  predicate  

g close to.  The rationale behind this is that if a pattern  is not large at g close to level it certainly will not be large at the 

level of detailed spatial relations. Filtration of large patterns saves a great deal of computations since there are much fewer 

spatial association relationships left at the lower concept levels. The filtration process is done using minimum support at 

the high levels. 

 

Algorithm for Multiple Level Spatial Association Rules 

The mining process is started by a query which is to describe  a class of objects  S using other task relevant classes  of 

objects,  and a set of relevant relations.  For example,  a  user  may want  to  describe  parks  by  presenting the description 

of relations between parks and other  objects  like:  railways, restaurants,  zoos,  hydrological  objects,  recreational  

objects,  and  roads.   Furthermore, the  user can state  that he/she  is interested only  in  objects  in  the  distance  less  

than  one  kilometer  from a  park.  The   first  step  of the  algorithm collects the task-relevant data.  Then, some efficient 

spatial computations are performed as mentioned above to extract  spatial associations  at the  level of generalized spatial 

relations.  These efficient computations look for objects whose minimal bounding rectangles are located in  the  distance  

no  greater  than  the  threshold  to  satisfy the close to predicate.  In  this way, objects  satisfying the predicate g close to 

(generalized close to) are found.  This predicate encompasses exact spatial predicates  like adjacent to,  intersects, distance 

less than x. The g close to predicates are stored in an extended relational database Coarse predicate DB. Every row of the 

Coarse predicate DB is a description of a single object from the class of objects being described.  Description consists of 

objects which satisfy task relevant predicates. For example, a row related to Stanley Park in Vancouver may include 

restaurant, zoo, main road, inlet, lake and other objects located inside the park or close to it. Each predicate in Coarse 

predicate DB is checked with the threshold for the top level to filter out task-relevant classes of objects in the g close to 

predicates which do not  promise getting  large predicates.  For example, if  only  5%  of  objects  from class  S  satisfy  
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the  predicate  g close to(s, zoo) and the minimum support threshold on the top level is 15% then the predicates g close 

to(s,zoo) will be deleted. This  filtration results in a database of large predicates (Large Coarse predicate DB). A spatial 

association rules at the coarse level can be generated from Large Coarse predicate DB. This database is further  processed  

using  finer  spatial  computations  to produce  Fine predicate DB.  In the  Fine predicate DB, generalized  predicates  like 

g close to are  changed  into exact spatial predicates  like adjacent to,  intersects, or on the top level is 15% then the 

predicates g close to(s,zoo) will be deleted. This filtration results in a database of large predicates (Large Coarse predicate 

DB). A spatial association rules at the coarse level can be generated from Large Coarse predicate DB. This database is 

further processed  using   finer  spatial  computations  to produce  Fine predicate DB.  In the Fine predicate DB, 

generalized  predicates  like g close to are  changed  into exact spatial predicates  like adjacent to,  intersects, or distance 

less than x.   We  call  a  single  predicate,  like close to(x,  lake),  a  1-predicate.  The conjunction of  k such predicates is 

called a k-predicate. For example, the predicate close to(x,  lake)  ^  close to(x,  restaurant) is a 2-predicate.  This 

predicate  states  that  the object  x is  both  close to  a  lake  and  close to  a  restaurant  The Fine predicate DB is used to 

produce large k-predicates and generate association rules at multiple concept levels. At each concept level, the algorithm 

starts with large 1-predicates and iteratively generates large k-predicates until no large (k+1)-predicate can be found by 

adding a large 1-predicate to any large k-predicate. The algorithm finds large predicates by counting the number of 

occurrences of predicates in the database and comparing this number with the support threshold. The predicates and the 

number of their occurrences in Fine predicate DB are stored in the predicate table. Based on the information stored in the 

predicate table the algorithm derives strong rules.  For example, if the predicate  close to(x, lake) occurs in 100 rows of 

Fine predicate DB, the predicate close to(x, restaurant) occurs in 90 rows, and both  predicates  close to(x,  lake) and close 

to(x,  restaurant) occur together in 80 rows, then the rule \is a(x, park) ^ close to(x, lake) ! close to(x, restaurant) (80%)" 

may be derived.  After finding large predicates on high levels  of  concept  hierarchies,  the  algorithm tries  to  inlarge 

predicates and rules on lower levels. For example, restaurants may be specialized into oriental restaurants and continental 

restaurants, and the algorithm may find relations between parks and these types of restaurants. 

 

The  computational  complexity  of  the  algorithm  is O(C cnc +Cfnf +Cnonspatial) [34], where Cc and Cf are average 

costs of computing each spatial predicate at a coarse and   ne resolution level respectively, nc is the number of predicates 

that are coarsely computed, nf is the number of predicates that are   finely computed, and Cnonspatial is the total cost of 

generating rules from the predicate  databases.  It is observed that nf  is smaller than nc, but Cc is more efficient that Cf. 

 

The above algorithm, especially the two-step computation  technique,  is  a  novel  approach  towards  mining spatial 

association rules at multiple levels.  It requires background  knowledge  in  the  form of concept  hierarchies and expects a 

user to describe the form of the rule s/he  wants  by  giving such  information in  the  mining query.  It may be a good idea 

to work towards integration of this technique with clustering methods to avoid the necessity of the user having to provide 

the concept hierarchies for spatial and nonspatial attributes. 

 

2.4 Using Approximation and Aggregation  

We  discussed  a  clustering  algorithm  CLARANS  in Section 2.2.  The algorithm is an effective and efficient method  of   

finding  where  the  clusters  in  the  spatial database  are,   i.e.,  partitioning  data  into  clusters. However,  perhaps  the  

more  interesting  result  would be  to   find  out  why  the  clusters  are  there.    Knorr and  Ng  in   presented  a  study  

motivated  by  this question.  This question can be rephrased as \what are  the characteristics of the clusters in terms of the 

features that are close to them". The problem is how to measure  the  aggregate  proximity, because  statements  like 90% 

of the houses in a cluster are close to the feature F are more informative and interesting  than statements like one house is 

close to a certain feature F. The aggregate proximity is the measure of closeness of the set of points in the cluster  to a 

feature  as opposed to the  distance between  a  cluster  boundary  and  the  boundary  of  a feature. 

 

One may ask why the authors are not simply using the k nearest neighbor searches using structures like k-d trees, R-trees 

and its variants, Voronoi diagrams4, etc. It turns out that such structures are unable to perform the search needed for their 

purpose.  For example, the distance between the cluster and a feature is measured as the distance between the boundaries, 

not between the points, like centroids. Furthermore, the costs of building and  maintaining the  indices  are  prohibitive 

given  the fact  that  such  indices  may  not  be  used  frequently. Therefore, the authors propose the use of computational  
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geometry concepts   to   find  out  the  characteristics of a given cluster  in terms of the  features  close  to it. The  authors  

described  the  algorithm CRH  (where  C is  for  encompassing  circle,  R  for  isothetic  rectangle, and  H  for  convex  

hull5)  which  uses  such  concepts  as filters to reduce the candidate features at multiple levels. In short, they collect a 

large number of features from multiple  maps  and  feed  them  along  with  the  cluster to  the  algorithm CRH  and  

discover  knowledge  about spatial relationships as shown in Figure 5. 

 

Algorithm CRH 

Knorr  and  Ng  evaluated  various  computational geometry algorithms for distance computation, and shape descriptions 

and overlap computations. Taking into account the problem of data distribution in a cluster and various  sizes  and  shapes  

of  the  features,  the  authors chose a technique for computing the distance between a cluster point and feature boundary.  

For the shape description, the authors chosed minimum bounding structures.  They used these structures to develop a 

multiple filtering approach, with the   filters set up in an increasing order of accuracy but decreasing order of efficiency. 

That is,   filters that are applied earlier are more efficient but coarser than the later ones. 

 

The  algorithm CRH   first  applies  the  encompassing circle   filter  to the  large number of features.  Features that  are  

the  most  promising  ones  are  passed  to  the isothetic rectangle   filter.  These two   filters eliminate a large  number of 

features  and  only a small number of features is passed to the  final convex hull   filter.  Then, the CRH algorithm 

calculates the aggregate proximity of points in the cluster to the convex boundary of each feature, upon  which  the  

features  are  ranked.   Also, each  filter has its own threshold, which is the minimum number of features to pass on to the 

next   filter.  When the number of features found lies below the threshold, the cluster  is enlarged to encompass more 

features  to pass  the  threshold  limit.   Shape  enlargement  can  be achieved  by  the  linear  policy  (enlarge  the  shape  

by constant distance), or by the bisection policy. Bisection policy performs enlargement or diminution of the area by  a  

distance  which  decreases  logarithmically.   This policy checks if enough features are in the area of shape and enlarges or 

decreases the area according to the need. 

The problem with this method is that a feature may have to be tested for overlap with a cluster many times. The  

technique,  which  is  called  by  the  authors  mem-oization,  can  be  used  to avoid multiple computations by  storing the  

distance  between  each  feature  and  the cluster the   first time the intersection test is performed. Depending upon the 

shapes, circles, rectangles or convex hulls, the minimum distance between the circumferences, the boundaries of the 

rectangles, or the boundaries  of the  polygons respectively  are  stored.  Finally, the algorithm reports the features with 

the smallest aggregate  proximities  showing  minimum and  maximum distances  of points in the cluster  to the  feature, 

average distance, and percentages  of points located in the distance less than specified thresholds. The  algorithm  CRH  is  

experimentally  reported  to have  the  response  time  of  less  than  two  seconds for  processing 50,000 features. 

Furthermore,  it  is empirically shown to be scalable and the memorization policy is found to be the most consistent and 

efficient of all the shape enlargement policies. 

 

2.5 Mining in Image Databases 

Knowledge mining from Image Databases can be viewed  as a case of spatial data mining. There have been studies, led by 

Fayyad et al., on the automatic recognition and categorization of astronomical objects. The authors presented a system for 

identifying volcanos on the surface of Venus from images transmitted by  the  Magellan  spacecraft.   The  Magellan  

transmitted  more  than  30,000 high  resolution  synthetic  aperture radar images of the surface of Venus from different 

angles.  The system is composed of three basic components:  data focusing, feature extraction, and classication learning.  

Like all other data focusing techniques, the first  component  increases  the  overall efficiency  of the system by   first 

identifying the portion of the image being analyzed that is most likely to contain a volcano. This is achieved by comparing 

the intensity of the central pixel of a region to the estimated mean background intensity of its neighborhood pixels.  The 

second component of the system extracts interesting features from the data.  Standard methods used  in pattern recognition 

like edge detection or Hough transform, deal poorly with the variability and noise presented  in the case of natural data.  

Since it is difficult to   find attributes describing volcanos exactly, matrices containing volcanos images were  

decomposed to eigenvectors.  Eigen values were treated  as  attributes  describing  volcanos.  Then the   final  task,  which  

is  performed  by  the  rest  of  the system, is to discriminate between volcanos and other objects  looking like volcanos.  

Such \false alarms" are caused by objects on the surface of Venus causing intensity deviations.  The   final component of 
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the system uses training examples provided by the experts to create a classier that can discriminate between volcanos and 

\false alarms".  The decision tree method was used for this task. The incidence angle of the synthetic aperture radar to the 

planet instrument strongly influenced images of volcanos.  Thus, the images were normalized according to this angle. The 

obtained accuracy was about 80%. 

 

 

Figure 5: Using CRH for knowledge discovery in spatial databases 

 

In general, it is difficult for experts to provide classifications with 100% certainty and false classifications can produce 

large errors during classification because they are treated as negative examples. Smyth et al. in [48] discussed such issues, 

using the above problem as a case study. The paper's main contribution is the modeling and treatment of subjective label 

information given by the experts using probabilistic models. This research is important because it concludes that it is 

possible for the knowledge discovery methods to be modified to handle the lack of absolute ground truths.  

In another study the Second Palomar Observatory Sky Survey (POSS-II) decision tree methods were also used for the 

classification of galaxies, stars and other stellar objects. About 3 TB of sky images were analyzed. Data images were 

preprocessed by low level image processing system FOCAS, which selected objects and produced basic attributes like: 

magnitudes, areas, intensity, image moments, ellipticity, orientation, etc. Objects in the training data set were classified by 

astronomers. Based on this classification, about ten training sets for decision tree algorithm were constructed. From the 

trees obtained by the learning algorithm, a minimal set of robust, general and correct rules was found. If no additional 

attributes describing features of a single image plate were used, the accuracy was about 75%. Additional attributes were 

defined to reach a higher level of accuracy in every image. "Surestars" were detected in every image for the purpose of 

finding image resolution. To gain efficiency, this process was also automated. Using "sure-stars", two additional attributes 

for every image plate were computed: resolution scale and resolution fraction. These two attributes were used for 

normalization of attributes describing objects produced by FOCAS. Other attributes like background level or average 

intensity were also used to normalize plates. After the normalization the classification accuracy increased to about 94%. 

About 5 108 objects were classified. Obtained resolution was one magnitude better than the previous astronomical studies 

and it was possible to classify objects with images too faint to be classified by astronomers. The performance of decision 

tree methods was compared with neural networks. The tested neural networks algorithms were (a) traditional back 

propagation, (b) conjugate gradient optimization, and (c) variable metric optimization. The last two algorithms use 

numerical optimization methods to compute network weights. A number of different networks was tested. The 

performance was fairly unstable with accuracy varying from 30% to 95%. Additional drawback of neural networks was 

the requirement to specify internal parameters such as the number of hidden layers or size. For future investigation, 

testing of unsupervised clustering techniques is planned.  

 

The above studies showed the problems related to differences between images. The necessity of \normalization" of plates 

was shown to improve intra and interplate classication.  

 

Another example of image database mining is Stolorz et al's [49] study of fast spatio-temporal data mining from 

geophysical data sets. The authors described a distributed parallel querying and analysis environment called CONQUEST 

(CONtent-based QUErying in Space and Time). CONQUEST can be distinguished from other image database mining 

tools as it takes into account also temporal components of the datasets and it is designed to take advantage of parallel and 

distributed processing. CONQUEST was tested on two large climate datasets6 to detect cyclones and blocking features. 

The authors used heuristic rules based on signal processing methods for the extraction of characteristic weather 
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phenomena. Different task decomposition methods were used to facilitate the distribution of work among a group of 

machines. In the case of cyclone detection, the optimal solution was the decomposition into separate temporal slices. The 

decomposition in the temporal dimension is not always the best solution, especially when the state plays an important role 

in the detection of characteristic features. For detection of blocking features, the spatial decomposition, which assigns 

different blocks of grid points to different machines, was proven to be optimal. After detection of weather phenomena the 

authors used a clustering algorithm for the detection of shared spatial features. The goal of the authors is the building of a 

system that combines easy formulated queries with fast parallel execution and visualization of results for refinements of 

the queries.  

 

2.6 Other Methods  

The problem introduced by Fayyad et al.'s has been followed up by other researchers as well. One interesting study was 

done by Bell et al. who proposed a method for knowledge discovery in spatial databases based upon evidence theory. The 

authors took the image database mining problem described above as a case study. In this study the authors described an 

extension of general framework for database mining in relational databases based on evidential theory to mine knowledge 

from spatial databases.  

 

Evidential reasoning is a generalization of conventional probability in the sense that it does not make any assumptions 

about the independence of data being analyzed. Therefore, the evidential reasoning may be a better choice than using 

probabilistic model like the Bayesian method to model the data like Venus pictures, where pixels may be interrelated. 

Evidential theory provides a method to combine evidences gathered from different sources to produce a single measure of 

uncertainty. Thus, it is claimed to be a better method to reason about spatial data in the presence of uncertainty. The 

combination of evidences is done using a technique based upon Dempster-Shafer theory. Informally, this theory can be 

regarded as a generalization of the conventional probability theory, where the probabilities are fixed and known in 

advance, to the case where only the upper and lower bounds on probabilities are available. Bell et al. gave an example of 

how this method can be applied to image databases.  

 

Major et al. used IXLT M commercial tool for mining of the tropical storm database. The goal was to predict if hurricanes 

can reach the U.S. territory. Data describing hurricanes were decomposed to observations at points. These observations 

were stored in a traditional relational database. Attributes like position of the hurricane, speed, direction, angle to the 

coast, etc. were used. Since multiple tuples describing the single hurricane in different points were stored, some data were 

interdependent. The interdependency of data causes problems, because the algorithm which was used assumes 

independence of data. The best rules according to different criteria like performance, novelty, significance and simplicity 

were selected from rules derived by the IXL. The GIS system was used to support the selection of the best rules. This 

study shows the necessity of extension of traditional data mining techniques toward spatial data mining for better analysis 

of complex spatial phenomena and spatial objects.  

 

3.     FUTURE DIRECTIONS 

As we mentioned earlier, data mining is a young field going back no more than the late 1980s. Spatial data mining is even 

younger since data mining researchers first concentrated on data mining in relational databases. Many spatial data mining 

methods we analyzed actually assume the presence of extended relational model for spatial databases. But it is widely 

believed that spatial data are not handled well by relational databases. As advanced database systems, like Object-

Oriented (OO), deductive, and active databases are being developed, methods for spatial data mining should be studied in 

these paradigms.  

 

Data mining in spatial object-oriented databases: How can the OO approach be used to design a spatial database [40, 42] 

and how can knowledge be mined from these databases? It is an important question since many researchers have pointed 

out that OO database may be a better choice for handling spatial data rather than traditional relational or extended 

relational models. For example, rectangles, polygons, and more complex spatial objects can be modeled naturally in OO 

database. OO database techniques are maturing. OO knowledge representation techniques for spatial data have been 

proposed Mohan and Kashyap, and efficient SAM, like R-trees can be used to make OO database more efficient in access 
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and retrieval of data. Therefore, exploiting OO technology in data mining is an area with enormous potential. Techniques 

for generalizations of complex data objects, methods and class hierarchies have been studied by Han et al.  

 

Mining under uncertainty: Use of evidential reasoning can be explored in the mining process for image databases and 

other databases where uncertainty modeling has to be done. As mentioned in Bell et al's, evidential theory can model 

uncertainty better than traditional probabilistic models, like Bayesian methods. Fuzzy sets approach was applied to spatial 

reasoning and it can be extended to spatial data mining.  

 

A filter native clustering techniques: Another interesting future direction is the clustering of possibly overlapping objects 

like polygons as opposed to the clustering of points. Clusters can also maintain additional information about each object 

they contain, which can be the degree of membership. In this way, fuzzy clustering techniques can be used to 

accommodate objects having the same distance from the medoid.  

 

Mining Spatial Data Deviation and Evolution Rules: One extension of current work in spatial data mining toward spatio-

temporal databases is to study data deviation and evolution rules. For example, we can find spatial characteristic evolution 

rules which summarizes the general characteristics of the changing data. During the mining process one can discover 

properties of the regions with average growth of crops over 2% per year. A spatial discriminant evolution rule 

discriminates the properties of objects in the target class from those in the contrasting classes. For example, one can make 

a comparison of the areas where air pollution increased last year with the areas where the air quality has been improved.  

These rules may be used, for example, in medical imaging, where one would like to find out how certain features are 

deviating from the norm or how they are evolving over time. Other applications may include, discovering and predicting 

weather patterns of geographic regions, land use planning, and others.  

 

Using Multiple Thematic Maps: We discussed generalization-based methods which used a single thematic map during 

generalizations. Various applications demand spatial data mining to be conducted using multiple thematic maps. This 

would involve not only clustering but also spatial computations like map overlay, spatial joins, etc. For example, to 

extract general weather patterns, it may be better to use temperature and precipitation thematic maps and to carry out 

generalization in both.  

 

Interleaved generalization: To extend the generalization-based methods, it is interesting to consider interleaving spatial 

and nonspatial generalizations to get the results in more efficient manner. Efficient processing can be achieved because 

usually spatial operations, like joins and overlays, are more expensive than nonspatial computations. Thus, by first 

generalizing the non-spatial component and minimally using spatial generalizations one may save a lot of computation 

time.  

 

Generalization using temporal spatial data: This relates to the point we raised on discovery of data evolution rules earlier 

in this section. It may involve generalization over a sequence of maps collected during different time intervals. Then, 

comparison or summarization can be done to discover data evolution regularities.  

Parallel Data Mining: Due to the high volume of spatial data used during the computations mining using parallel 

machines or distributed farms of workstations can accelerate signicantly the work. We expect that parallel knowledge 

discovery will be a growing research issue in both relational and spatial data mining.  

 

Cooperation between Statistical Analysis and Data Mining: The enhancement of data mining techniques with mature 

statistical methods may produce interesting new techniques which may work well with different kinds of problems and on 

different data. For example, the statistical techniques may help in judgement on interestingness and significance of rules.  

 

Spatial Data Mining Query Language: Design of the user interface can be one of the key issues in the popularization of 

knowledge discovery techniques. One can create a query language which may be used by non-database specialists in their 

work. Such a query interface can be supported by Graphical User Interface (GUI) which can make the process of query 

creation much easier. Due to the special nature of data the query language can include features for display of the results of 

a query in graphical mode. The user interface can be extended by using pointing devices for the selection of objects of 

interest. The analysis of the results from the query may give feedback for refinement of the queries and show the direction 
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of further investigation The language should be powerful enough to cover the number of algorithms and large variety of 

data types stored in spatial databases.  

 

Multidimensional rule visualization: Discovering knowledge is not enough because it has to be presented in a manner that 

the user can understand easily. One of the most effective ways of digesting the rules discovered is through graphical 

visualizations. Humans are very good at interpreting visual data and scenes. This fact should be exploited in the data 

mining process. Multidimensional data visualization has been studied, but multidimensional rule visualization is still an 

immature area. Spatial data mining can use some well developed visualization techniques in computer graphics in this 

case.  

 

4.    CONCLUSION 

We have shown that spatial data mining is a promising field of research with wide applications in GIS, medical imaging, 

robot motion planning, etc. Although, the field is quite young, a number of algorithms and techniques have been proposed 

to discover various kinds of knowledge from spatial data. We surveyed existing methods for spatial data mining and 

mentioned their strengths and weaknesses. This led us to future directions and suggestions for the spatial data mining field 

in general. The variety of yet unexplored topics and problems makes knowledge discovery in spatial databases an 

attractive and challenging research field. We believe that some of the suggestions that we mentioned have already been 

thought about by researchers and work may have already started on them. But what we hope to achieve is to give the 

reader a general perspective of the field.  
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